Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family.

Identifieur interne : 003798 ( Main/Exploration ); précédent : 003797; suivant : 003799

Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family.

Auteurs : Nan Zhao [États-Unis] ; Jean-Luc Ferrer ; Jeannine Ross ; Ju Guan ; Yue Yang ; Eran Pichersky ; Joseph P. Noel ; Feng Chen

Source :

RBID : pubmed:18162595

Descripteurs français

English descriptors

Abstract

The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 A resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in IAA homeostasis across a wide range of plants.

DOI: 10.1104/pp.107.110049
PubMed: 18162595
PubMed Central: PMC2245846


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family.</title>
<author>
<name sortKey="Zhao, Nan" sort="Zhao, Nan" uniqKey="Zhao N" first="Nan" last="Zhao">Nan Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996</wicri:regionArea>
<wicri:noRegion>Tennessee 37996</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ferrer, Jean Luc" sort="Ferrer, Jean Luc" uniqKey="Ferrer J" first="Jean-Luc" last="Ferrer">Jean-Luc Ferrer</name>
</author>
<author>
<name sortKey="Ross, Jeannine" sort="Ross, Jeannine" uniqKey="Ross J" first="Jeannine" last="Ross">Jeannine Ross</name>
</author>
<author>
<name sortKey="Guan, Ju" sort="Guan, Ju" uniqKey="Guan J" first="Ju" last="Guan">Ju Guan</name>
</author>
<author>
<name sortKey="Yang, Yue" sort="Yang, Yue" uniqKey="Yang Y" first="Yue" last="Yang">Yue Yang</name>
</author>
<author>
<name sortKey="Pichersky, Eran" sort="Pichersky, Eran" uniqKey="Pichersky E" first="Eran" last="Pichersky">Eran Pichersky</name>
</author>
<author>
<name sortKey="Noel, Joseph P" sort="Noel, Joseph P" uniqKey="Noel J" first="Joseph P" last="Noel">Joseph P. Noel</name>
</author>
<author>
<name sortKey="Chen, Feng" sort="Chen, Feng" uniqKey="Chen F" first="Feng" last="Chen">Feng Chen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18162595</idno>
<idno type="pmid">18162595</idno>
<idno type="doi">10.1104/pp.107.110049</idno>
<idno type="pmc">PMC2245846</idno>
<idno type="wicri:Area/Main/Corpus">003991</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003991</idno>
<idno type="wicri:Area/Main/Curation">003991</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003991</idno>
<idno type="wicri:Area/Main/Exploration">003991</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family.</title>
<author>
<name sortKey="Zhao, Nan" sort="Zhao, Nan" uniqKey="Zhao N" first="Nan" last="Zhao">Nan Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996</wicri:regionArea>
<wicri:noRegion>Tennessee 37996</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ferrer, Jean Luc" sort="Ferrer, Jean Luc" uniqKey="Ferrer J" first="Jean-Luc" last="Ferrer">Jean-Luc Ferrer</name>
</author>
<author>
<name sortKey="Ross, Jeannine" sort="Ross, Jeannine" uniqKey="Ross J" first="Jeannine" last="Ross">Jeannine Ross</name>
</author>
<author>
<name sortKey="Guan, Ju" sort="Guan, Ju" uniqKey="Guan J" first="Ju" last="Guan">Ju Guan</name>
</author>
<author>
<name sortKey="Yang, Yue" sort="Yang, Yue" uniqKey="Yang Y" first="Yue" last="Yang">Yue Yang</name>
</author>
<author>
<name sortKey="Pichersky, Eran" sort="Pichersky, Eran" uniqKey="Pichersky E" first="Eran" last="Pichersky">Eran Pichersky</name>
</author>
<author>
<name sortKey="Noel, Joseph P" sort="Noel, Joseph P" uniqKey="Noel J" first="Joseph P" last="Noel">Joseph P. Noel</name>
</author>
<author>
<name sortKey="Chen, Feng" sort="Chen, Feng" uniqKey="Chen F" first="Feng" last="Chen">Feng Chen</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Binding Sites (MeSH)</term>
<term>Gene Expression Regulation, Plant (physiology)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Methyltransferases (chemistry)</term>
<term>Methyltransferases (genetics)</term>
<term>Methyltransferases (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Oryza (enzymology)</term>
<term>Oryza (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Protein Conformation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides indolacétiques (métabolisme)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Methyltransferases (composition chimique)</term>
<term>Methyltransferases (génétique)</term>
<term>Methyltransferases (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oryza (enzymologie)</term>
<term>Oryza (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (physiologie)</term>
<term>Sites de fixation (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Indoleacetic Acids</term>
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Methyltransferases</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides indolacétiques</term>
<term>Methyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Famille multigénique</term>
<term>Modèles moléculaires</term>
<term>Phylogenèse</term>
<term>Sites de fixation</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 A resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in IAA homeostasis across a wide range of plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18162595</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>06</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>146</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2008</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family.</ArticleTitle>
<Pagination>
<MedlinePgn>455-67</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 A resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in IAA homeostasis across a wide range of plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Nan</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferrer</LastName>
<ForeName>Jean-Luc</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ross</LastName>
<ForeName>Jeannine</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guan</LastName>
<ForeName>Ju</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yue</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pichersky</LastName>
<ForeName>Eran</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Noel</LastName>
<ForeName>Joseph P</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>EU375746</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>12</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6U1S09C61L</RegistryNumber>
<NameOfSubstance UI="C030737">indoleacetic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D008780">Methyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008780" MajorTopicYN="N">Methyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18162595</ArticleId>
<ArticleId IdType="pii">pp.107.110049</ArticleId>
<ArticleId IdType="doi">10.1104/pp.107.110049</ArticleId>
<ArticleId IdType="pmc">PMC2245846</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phytochemistry. 2007 Jun;68(11):1537-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Mar;8(3):271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11224575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Jul;111(3):747-753</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2006 Apr 15;448(1-2):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16165084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Jan 16;534(1-3):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12527364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Oct;17(10):2693-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Feb 10;311(5762):808-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Feb 8;39(5):890-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10653632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1704-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 May;64(1-2):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17364223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 31;406(6799):956-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10984041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Sep;31(6):675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12220260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2002 Oct 15;406(2):261-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12361714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Feb;275(2):125-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16333668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1999 Jul 1;367(1):9-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10375393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(5):577-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):32-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4788-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11287667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):879-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 16;276(11):8213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Oct 1;382(1):145-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11051108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Nov;7(11):847-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Apr;15(4):305-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10320398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1999 Apr;2(2):90-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:377-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Dec 5;234(3):779-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8254673</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Feng" sort="Chen, Feng" uniqKey="Chen F" first="Feng" last="Chen">Feng Chen</name>
<name sortKey="Ferrer, Jean Luc" sort="Ferrer, Jean Luc" uniqKey="Ferrer J" first="Jean-Luc" last="Ferrer">Jean-Luc Ferrer</name>
<name sortKey="Guan, Ju" sort="Guan, Ju" uniqKey="Guan J" first="Ju" last="Guan">Ju Guan</name>
<name sortKey="Noel, Joseph P" sort="Noel, Joseph P" uniqKey="Noel J" first="Joseph P" last="Noel">Joseph P. Noel</name>
<name sortKey="Pichersky, Eran" sort="Pichersky, Eran" uniqKey="Pichersky E" first="Eran" last="Pichersky">Eran Pichersky</name>
<name sortKey="Ross, Jeannine" sort="Ross, Jeannine" uniqKey="Ross J" first="Jeannine" last="Ross">Jeannine Ross</name>
<name sortKey="Yang, Yue" sort="Yang, Yue" uniqKey="Yang Y" first="Yue" last="Yang">Yue Yang</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Zhao, Nan" sort="Zhao, Nan" uniqKey="Zhao N" first="Nan" last="Zhao">Nan Zhao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003798 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003798 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18162595
   |texte=   Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18162595" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020